MLAstro SHG700 Spectroheliograph

Pedro RÉ

https://pedroreastrophotography.com/

The **MLAstro SHG 700** is a state-of-the-art, high-resolution solar spectroheliograph engineered for precise solar imaging. Designed with advanced features and intuitive operation, it is designed to serve both novice and seasoned astrophotographers. Unlike traditional etalon-based systems, the SHG 700 offers superior spectral resolution and enhanced flexibility in wavelength selection, enabling detailed monochromatic imaging of solar features such as H-alpha, Calcium K, and Sodium D. Its robust construction, digital integration, and user-friendly interface position it as a compelling instrument for solar observation, particularly within the amateur astronomy community. By merging modern optical technology with accessible design, the MLAstro SHG 700 represents a significant advancement in narrowband solar imaging.

The **SHG700** (Figure 1, 2 & 3) was developed by Nguyen T. Minh (PhD). Mihn runs a website (https://mlastro.com/) and sells not only the SHG700 but also lens kits for the Sol'Ex (https://solex.astrosurf.com/sol-ex-presentation-en.html) and accessories too.

Main Specifications:

Optical Components:

- 2x MLAstro 72mm flat-field compound lenses
- 1x 2400 l/mm holographic grating (25x25x6mm)
- 1x 7mm long, 7-micron wide Quartz slit (optional 10mm quartz slit)

Performance:

- Enables full-disk scans with telescopes up to 730mm focal length in one pass.
- Comes fully assembled and calibrated, ready for immediate use.

Additional Accessories:

- T2 (M42) to 1.25" adapter (for connecting the camera)
- 2" to M42 nosepiece (for attaching to the telescope)

Operational Principles of the MLAstro SHG 700 Spectroheliograph

The MLAstro SHG 700 spectroheliograph enables high-resolution solar imaging by scanning the solar disk line-by-line in narrow spectral bands. Unlike etalon-based systems that provide real-time full-disk views, this instrument utilizes a precision quartz slit to isolate a narrow segment of incoming sunlight. The collimated beam is diffracted through a 2400 lines/mm holographic grating, producing a dispersed spectrum from which a monochrome camera records spectral slices at a selected wavelength. These slices are acquired sequentially—either manually or via motorized right ascension tracking—and subsequently reconstructed into a monochromatic image using dedicated software such as SHG GUI¹ or JSol'Ex². Final image processing involves stacking, sharpening, and contrast enhancement, following

¹ https://github.com/thelondonsmiths/Solex_ser_recon_EN

² https://melix.github.io/astro4j/1.3.0/en/jsolex.html

workflows similar to planetary imaging. This technique offers superior spectral resolution and wavelength flexibility, making it a valuable tool for detailed solar studies.

Figure 1- MLAstro SHG700 Spectroheliograph.

Figure 2- MLAstro SHG700 Spectroheliograph. Takahashi S60C & Player One Neptune M (IMX178).

Pros of the MLAstro SHG 700

Optical and Spectral Performance

- Ultra-narrowband resolution (~0.3 Å FWHM): Captures fine solar features with exceptional contrast.
- High spectral resolution (~R = 20,000): Suitable for solar imaging

Build Quality and Design

- Preassembled and calibrated: No need for 3D printing or DIY alignment—ready to use out of the box.
- Premium materials: CNC-machined aluminium body, 7μm quartz slit, and flat-field compound lenses ensure durability and optical precision.
- Micrometre-driven focus points: Allows fine control over image sharpness and slit alignment.

Software and Workflow

- Compatible with SHG GUI and JSOLEX for image reconstruction.
- Produces full-disk solar images with rich spectral detail, surpassing typical etalon-based systems.

Versatility

- Can be adapted for stellar spectroscopy with optional kits.
- Works with a wide range of telescopes and monochrome cameras.

Cost Efficiency

• Offers performance comparable to high-end etalon filters (which can cost tens of thousands of dollars) at a fraction of the price.

X Cons of the MLAstro SHG 700

Imaging Time and Workflow

- Not real-time: Requires scanning the Sun line-by-line, which takes several minutes depending on setup.
- Post-processing required: Image reconstruction and enhancement are essential, demanding familiarity with stacking and spectral software.

Learning Curve

- Requires technical understanding: Users must grasp slit-based spectroscopy and spectral alignment principles.
- Less intuitive than plug-and-play solar scopes

Hardware Requirements

- Needs a fast computer: Image acquisition and processing demand a modern Windows-based laptop or desktop (Linux support may be limited).
- Camera and telescope not included: Users must supply compatible gear

Availability

Batch-based production: Units are released in limited batches, so availability may fluctuate.

Step-by-Step Operation of the MLAstro SHG 700

1. Setup and Alignment

- Mount the SHG 700 securely to your telescope.
- Ensure the telescope is **polar-aligned** and tracking accurately (manual or motorized RA drive).
- Attach a monochrome camera to the SHG's output port.
- Connect the camera to your computer and launch your capture software (e.g., SharpCap or Firecapture).

2. Focusing the Optical Train

- Use the micrometre focus knobs to adjust:
 - Slit focus: Ensures the solar image is sharply defined at the slit (dust on the slit can be used for precise focusing).
 - o **Collimator lens focus**: Optimizes the beam entering the grating.
 - o **Camera focus**: Sharpens the spectral image on the sensor.
- Look for scintillating vertical lines in the preview—these indicate critical focus.

3. Targeting the Sun

- Slew the telescope until the Sun is cantered on the slit.
- Use live view to confirm that the solar image is aligned and stable.
- Adjust tilt if necessary to remove vertical light band artifacts.

4. Spectral Scanning

- Begin the scan:
 - o **Manual**: Slowly move the telescope across the solar disk.
 - o **Automated**: Use a SharpCap script to control mount and camera synchronously.
- Record the scan as a **SER video file** or image sequence at the desired wavelength (*e.g.*, Halpha, Ca K...).

5. Image Reconstruction

- Load the scan into JSOLEX or SHG GUI.
- The software stitches thousands of spectral slices into a full monochromatic image.
- Apply stacking, sharpening, and contrast enhancement if needed.

6. Post-Processing

- Optional: Colorize the image using false-colour palettes.
- Save final images in standard formats (TIFF, PNG) for analysis or publication.

7. Maintenance and Storage

- Clean the quartz slit gently if dust is present.
- Store the SHG 700 in a dry, padded case when not in use.

Essential Accessories for the SHG 700

Accessory	Purpose
T2 (M42) to 1.25" adapter	Connects your monochrome camera to the SHG 700
2" to M42 nosepiece	Attaches the SHG 700 to your telescope's focuser or diagonal
Monochrome camera	Required for capturing spectral slices
Tracking mount	Enables smooth scanning across the solar disk
Windows laptop or PC	For image acquisition and processing with SHG GUI or JSOLEX

Optional Enhancements

- **Solar finder scope**: Helps align the Sun quickly and safely
- Neutral density or ERF filters: Protect optics and reduce heat load (especially for larger apertures)
- Custom mounting plates or dovetails: For rigid integration with your existing setup

Figure 3- MLAstro SHG700 Spectroheliograph. Takahashi S60C & Player One Neptune M (IMX178).

Figure 4 – MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Takahashi EM-400 equatorial mount. Pedro RÉ (2025).

Figure 5 - MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Sky Watcher star adventurer Gti equatorial mount. Pedro RÉ (2025).

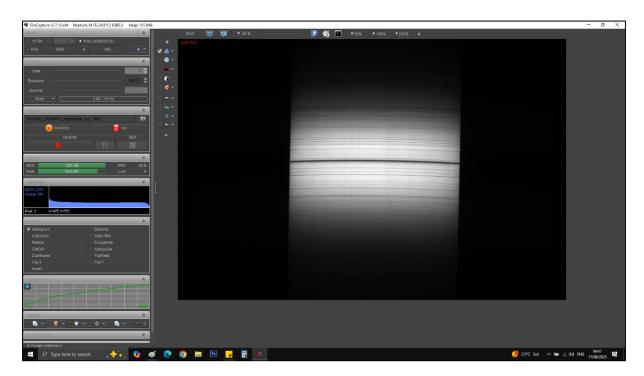


Figure 6 - MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Sky Watcher star adventurer Gti equatorial mount. Firecapture acquisition software. Pedro RÉ (2025).

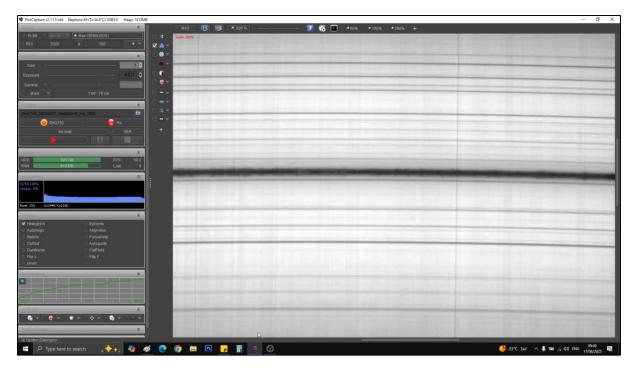


Figure 7 - MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Sky Watcher star adventurer Gti equatorial mount. Firecapture acquisition software. Pedro RÉ (2025). *In Focus*

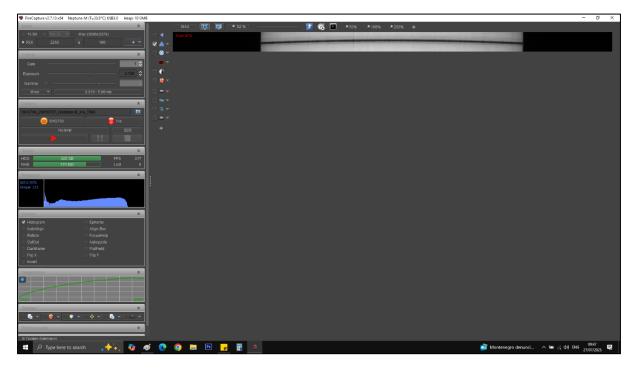


Figure 8 - MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Sky Watcher star adventurer Gti equatorial mount. Firecapture acquisition software. Pedro RÉ (2025).

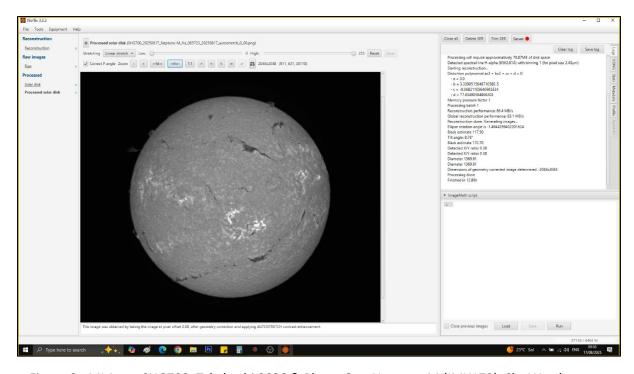


Figure 9 - MLAstro SHG700, Takahashi S60C & Player One Neptune M (IMX178), Sky Watcher star adventurer Gti equatorial mount. Firecapture acquisition software. Pedro RÉ (2025). *JSOLEX Software*.

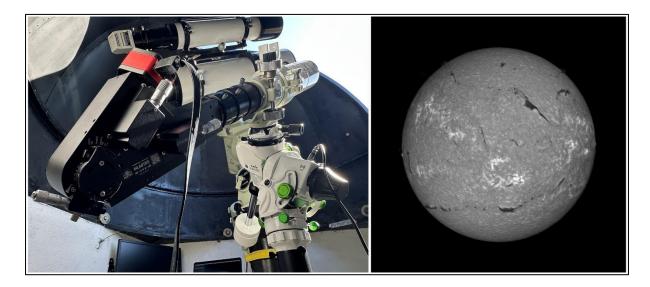


Figure 10 - SUN (20250817) H-alpha. FS60C f/5.9 MLAstro SHG700, Player One Neptune-M SW Star Adventurer Gti (10 stacked images). Pedro RÉ (2025).

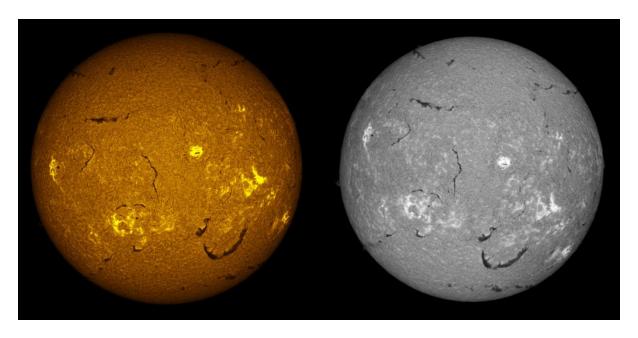


Figure 11 - SUN (20250801) H-alpha. TV NP101 F/5.4, Double Stack SM90II/SM60, FS60C f/5.9, MLAstro SHG700. Pedro RÉ (2025).

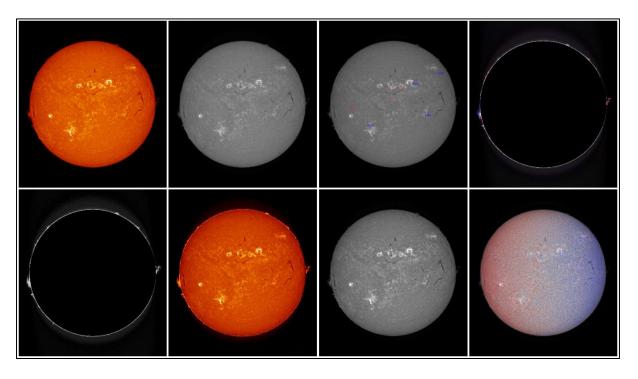


Figure 12 - SUN (20250715) H-alpha. FS60C f/5.9, MLAstro SHG700, Player One Neptune-M, SW Star Adventurer GTi | **JSolEx**. Pedro RÉ 2025).

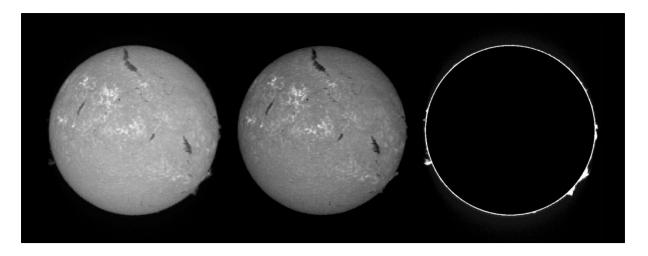


Figure 13 - SUN (20250517) H-alpha. FS60C f/5.9, MLAstro SHG700, Player One Neptune-M. **SHG GUI**. Pedro RÉ (2025).

References:

https://mlastro.com/ MLAstro Web site

https://solex.astrosurf.com/sol-ex-presentation-en.html Sol'Ex Web site

https://espace-infini.fr/en/operating-principle-overview/ Sol'Ex owerview

https://espace-infini.fr/en/first-implementation/ User guide

https://melix.github.io/astro4j/1.3.0/en/jsolex.html JSol'Ex Web site

https://github.com/thelondonsmiths/Solex_ser_recon_E thelondonsmiths/Solex_ser_recon_E

https://pedroreastrophotography.com/SHG700 pre.html Pedro RÉ's Web Site

Youtube Videos (Pedro RÉ):

https://youtu.be/0uZavSBNPRo

Solar imaging session (20250517) | Pedro RÉ MLAstro SHG700 (First Light) | FS60C F/5.9 | Player One Neptune-M | Takahashi EM-400

https://youtu.be/gkbT8e7Qckw

Solar imaging session (20250608) | Pedro RÉ

MLAstro SHG700 (First Light) | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/AtczYWC1lfE

Solar imaging session (20250622) | Pedro RÉ

MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/6O4VpVgddiU

Solar imaging session (20250708) | Pedro RÉ

MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/BAlkzvzGpJM

Solar imaging session (20250722) | Pedro RÉ

MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/Amqmc9oxXrs

Solar imaging session (20250722) | Pedro RÉ
MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/SxtlHoexTDs

Solar imaging session (20250727) | Pedro RÉ
MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi

https://youtu.be/GEM8nX858J0

Solar imaging session (20250817) | Pedro RÉ MLAstro SHG700 | FS60C F/5.9 | Player One Neptune-M | SW Star Adventurer GTi